On the inverse eigenvalue problems: the case of superstars

نویسندگان

  • Rosario Fernandes
  • Stephen J. Kirkland
چکیده

Let T be a tree and let x0 be a vertex of T . T is called a superstar with central vertex x0 if T − x0 is a union of paths. The General Inverse Eigenvalue Problem for certain trees is partially answered. Using this description, some superstars are presented for which the problem of ordered multiplicity lists and the Inverse Eigenvalue Problem are not equivalent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela on the Inverse Eigenvalue Problems: the Case of Superstars∗

∗Received by the editors September 16, 2007. Accepted for publication July 27, 2009. Handling Editor: Stephen J. Kirkland. †Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal ([email protected]). This research was done within the activities of “Centro de Estruturas Lineares e Combinatórias”. Electronic Journal ...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Inverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems

In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results  how that the simplicity and efficiency of this method.

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017